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Abstract 
 

 
An exposure assessment strategy (EAS) determines the number of samples required to 

characterize an occupational health exposure’s acceptability.  A novel EAS (AFIT-EAS) 

was developed with the objective of maximizing the sensitivity for detecting 

unacceptable exposures, while minimizing the total number of samples needed.  The 

purpose of this field evaluation was to use data from a comprehensive sampling 

campaign (SC) to compare the AFIT-EAS with two commonly used EASs:  the 

Occupational Safety and Health Administration’s (OSHA-EAS) and the American 

Industrial Hygiene Association’s (AIHA-EAS).  10 randomly sampled replicates were 

selected from the SC.  The number of samples selected per replicate was in accordance 

with each respective EAS’s protocol.  Results show that the true health risk assessment 

for the SC was evaluated as unacceptable; therefore, EAS conclusions matching this 

result were counted as successful.  The OSHA-EAS of one (1) sample per replicate was 

the least successful with a maximum success rate of 20%.  The AIHA-EAS of six (6) 

samples per replicate was equal to the AFIT-EAS of three (3) samples per replicate with 

a maximum success rate of 100%.  The AFIT-EAS was found to be more accurate than 

the OSHA-EAS and equally accurate as the AIHA-EAS, while using only half as many 

samples.        
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FIELD EVALUATION OF A NOVEL EXPOSURE ASSESSMENT STRATEGY           

USING RESPIRABLE COAL DUST EXPOSURES DURING                                                           

HEAT PLANT COAL RECEIVING OPERATIONS 

 

I.  Introduction 

Background 
 

Working with hazardous materials always presents a certain level of risk to the 

employee.  The level of risk is determined by the duration and frequency of the exposure 

and by the severity and inherent toxicity of the material (Hewett, 2001).  The United 

States Air Force (AF) Bioenvironmental Engineers (BEEs) are risk assessment and risk 

management specialists who protect AF personnel from occupational health hazards by 

performing exposure assessments.  Currently, an exposure assessment (EA) can consist 

of a campaign of very complicated and costly exposure sampling involving the collection 

of multitudes of personal and area samples from a work environment to determine the 

concentrations of toxic gases, vapors, or particulates to which employees are exposed.  

However, an EA can be as simple as the application of professional judgment following a 

visual inspection of the work area.  Due to this wide range of resources required on a 

case-by-case basis, to achieve the optimal assessment of risk, the need for a formal 

exposure assessment strategy (EAS) is evident.   

 An exposure assessment strategy (EAS) is the formal plan that provides the 

employer (AF unit commanders) an estimate of how many and what type of samples the 

industrial hygienist (BEE flight) may be required in order to adequately assess the 

industrial workplace hazards for which the employees are exposed (NIOSH, 1977).  
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Furthermore, the EAS provides the BEE with a decision scheme to determine whether 

occupational exposures warrant sampling (Tuggle, 1981), and if so, by means of 

sampling results, ascertain whether the health risk due to exposures is considered 

controlled or uncontrolled.  Unfortunately, no single EAS fits every industry or 

corporation. 

Currently there is no formal EAS universally employed by all BEEs throughout 

the AF.  Traditionally, the BEEs have followed a worst-case compliance strategy based 

on the OSHA model.  Mulhausen defines this approach to exposure surveillance as 

follows:   

“An attempt is made to identify the maximum-exposed workers in a 
group.  One or a few measurements are then taken and simply compared 
with the [occupational exposure limit] OEL.  If the exposures of the 
maximum-exposed workers are sufficiently below the OEL, then the 
situation is acceptable.  This strategy provides little insight into the day-to-
day variation in exposure levels and is not amenable to the development of 
exposure histories that accurately reflect exposures and health risk.” 
(Mulhausen, et al., 2003)   

 
In response to the health hazard risk from underestimating the true exposure due to small 

sample sizes, along with a lack of understanding of the day-to-day variation in exposure 

levels described by Mulhausen, the comprehensive exposure strategy was introduced in 

1998.  (American Industrial Hygiene Association, 1998) One comprehensive strategy, 

known as the American Industrial Hygiene Association (AIHA) EAS, recommends 

collecting a minimum of six measurements and then using a “Decision Statistic” 

(Murphy, 2006) as a threshold for exposure acceptability.  The upper 95th percentile has 

long been a commonly used decision statistic, (Jayjock, 1997; Leidel, et al., 1977; 

Rappaport, et al., 1981; Selvin, et al., 1987); however, the use of alternative threshold 
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levels of acceptability are not restricted to only the 95th

 A criticism of the AIHA EAS is that the number of samples, six minimum, is 

excessively burdensome with regard to the limited available resources.  However, this 

number could be reduced if a two-stage sampling approach was incorporated (Hewett, 

2005).  Taking this into consideration, a proposed EAS developed at the Air Force 

Institute of Technology (AFIT) utilizes a tiered approach.  Tier-1 employs gas and vapor 

airborne concentration modeling to determine if an overexposure is possible.  When the 

modeling in tier-1 cannot confidently rule out overexposure, tier-2 implements direct 

reading instruments (DRIs) to estimate an airborne exposure.  If the assessment from the 

DRIs does not clearly demonstrate an acceptable or unacceptable characterization then 

tier-3 utilizes a planned strategy of traditional integrated sampling to further characterize 

the exposure.  

 percentile in the comprehensive 

model.   

Problem Statement 
 

Because of ever-limited resources, AF BEEs collect only the minimum number of 

air samples required to derive a risk assessment for a hazardous process.  For work 

processes that exhibit clearly unacceptable exposures, this approach can demonstrate the 

need for exposure control in the most hazardous of circumstances.  Risk assessments 

based on few samples collected from a log-normally distributed exposure profile can 

often have a wide confidence interval due to processes and worker variability.  A large 

upper confidence limit or worse, failing to recognize the lack of statistical confidence on 

the exposure assessment all together, can result in erroneously concluding exposures are 

within control limits, when in actuality, they may fail to meet safety standards.  To a 
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lesser degree, there is a conversely associated problem of calling for costly control 

measures when the hazard is in fact sufficiently controlled.  To address these problems, 

the AFIT EAS was developed not only to increase the confidence of the exposure 

assessments but also to keep the number of integrated analytical samples to a minimum, 

(for details refer to Appendix A:  AFIT EAS).        

An integral problem faced by every EAS is that achieving a high confidence in 

hazard characterization often requires a burdensome number of samples be collected.  

Conversely, if a minimalistic approach is taken, then accuracy suffers resulting in both a 

higher risk of instituting unneeded and costly controls or by allowing workers to be 

overexposed.  Therefore, the BEE must consider the expenditure of resources for an EAS 

in the following three categories:  1) the costs of sampling, 2) the costs of controlling 

incorrectly classified hazards, which need not be controlled (α error), and 3) the costs of 

excess risk to health for not controlling incorrectly classified hazards, which should have 

been controlled (β error).       

The focus of this thesis is to evaluate the efficacy of the AFIT EAS using actual 

AF exposure data.  Because AF BEEs only collect minimal data on a single industrial 

process, the use of existing data would be insufficient to challenge the AFIT EAS.  

Therefore, a robust sampling campaign was designed and executed with the purpose of 

gathering enough data to define closely the true process exposure profile of an AF 

industrial process.   

Several factors were considered in selecting an industrial task to assess.  The task 

had to involve a hazardous material that could be measureable using an existing DRI and 

integrated sampling protocols.  The results had to be comparable to accepted 
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occupational exposure standards.  The industrial activity associated with the toxicant had 

to be frequent and predictable.  Preferably, there had to be more than one worker 

performing the activity over the course of the campaign for between-worker and within-

worker comparisons.  Lastly, the anticipated exposure had to be greater than the limit of 

detection for both the DRI and the analytical methods yet not so overly great as to 

generate an obvious overexposure during the risk assessment.  The AF process that most 

closely met these criteria was the activity of filling furnace bunkers with coal at the heat 

plants located on Area B and Area C at Wright-Patterson AFB.   

Research Objectives   
  

The objective of this field evaluation is to address the following questions related 

to the accuracy and efficiency of the AFIT EAS.   

1. Does the AFIT EAS result in a correct risk assessment outcome more often 

than the OSHA compliance strategy? 

2. Does the AFIT EAS reach the correct risk assessment outcome using fewer 

integrated samples than the AIHA model?   

3. What benefits (if any) does the AFIT EAS bring in addition to relative 

increased accuracy and fewer samples?  

4. What limitations (if any) does the AFIT EAS have which fails to outperform 

either the OSHA or AIHA EAS?    

Focus and Scope 
 

The AFIT EAS tier-1 is used to rule out gas and vapor exposures based on 

exposure modeling.  This is a key benefit of the AFIT EAS, as screening exposures that 
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are clearly controlled will reduce the number of DRI and analytical samples collected.  

This also has the benefit of documenting the current work conditions at the time of the 

risk assessment for later comparison when processes change.  Additionally, tier-1 models 

can be used to anticipate work frequencies or durations that would trigger tier-2 

sampling.  However, the goal of this study was to select a process beyond the tier-1 

cutoffs.  Additionally, tier-1 models can only be applied to gases and vapors.  The 

exclusive sample collection of particulate exposures (coal dust) in this study cannot be 

applied to any of the tier-1 models for exposure characterization.  Therefore, the focus of 

this field evaluation by design and limitation is restricted to tier-2 and tier-3 respectively, 

the DRIs and integrated sampling components of the AFIT EAS.   

Methodology 
 

The methodology of this study begins with the collection and analysis of air 

samples for establishing a baseline exposure profile.  The evaluation and contrasting of 

the EASs follow, with random selections from the baseline data set in compliance with 

the decision logic and methodologies of each specific strategy.  

Airborne dust and crystalline silica exposures were monitored among coal-fueled 

heat plant workers engaged in furnace bunker filling operations at two sites on Wright-

Patterson Air Force Base (WPAFB).  In line, integrated samples and DRI samples were 

simultaneously collected using one common sample train.  One-minute average 

concentrations of respirable dust were logged using the Thermo Electron Corporation’s 

Personal Data-logging Real-time Aerosol Monitor – personalDataRAM® (Thermo 

Electron Corp., Franklin, MA) with an attached cyclone to separate the respirable 

particles from total aerosolized dust.  The respirable dust exposure was collected on a 



7 

pre-weighed filter cassette attached to the personalDataRAM®

The 2008 American Conference of Industrial Hygienists (ACGIH

  The filters were sampled 

and analyzed according to the National Institute of Occupational Safety and Health 

(NIOSH) Method number 0600 – Particulates Not Otherwise Regulated, Respirable 

(PNOR) and method number 7500 – Silica, Crystalline, by X-ray Powder Diffraction 

(XRD).  NIOSH Method 0600 uses gravimetric analysis to determine total respirable 

concentration as a function of weight and air volume sampled.  The same sample, through 

X-ray diffraction, determines the percentages of the three most common forms of 

crystalline silica to include quartz, cristobalite and tridymite.   

®) threshold 

limit value (TLV®) booklet (ACGIH, 2008) lists two distinct classifications of coal dust 

with individual respirable time-weighted averages (TWA).  Established in 1995, the 

TWA TLV® for anthracite coal dust is 0.4 milligrams per cubic meter of air (mg/m3), 

while bituminous coal dust has a TWA TLV® of 0.9 mg/m3 (ACGIH, 2008).  A bulk 

sample of coal from each of the heat plants was submitted for percentage of anthracite 

and bituminous coal content.  The results were vastly different between the two heat plant 

samples even though coal is supplied from the same source (for further detail, please 

refer to Chapter IV Results).  Due to the inconsistency reported in the bulk sample, the 

application of the anthracite coal standard of 0.4 mg/m3 

The 2008 ACGIH

was used in this study with the 

total exclusion of the bituminous coal component.     

® TLV® booklet lists the respirable TWA TLV® for crystalline 

silica at 0.025 mg/m3 (note that between 2005 and 2006 ACGIH® withdrew tridymite and 

tripoli, while combining quartz and cristobalite into one TLV®, i.e. Silica, Crystalline) 

(ACGIH, 2008).  Additionally, the ACGIH® gave crystalline silica an A2 designation 
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indicating it as a potential human carcinogen.  Studies have shown that crystalline silica 

(α-quartz) may be present in coal dust by as much as 10% (Borm, 1997).  For this reason, 

all bulk and air samples were also analyzed for crystalline silica content.   

ACGIH® Exposure Limit Categories     

The ACGIH divides its published exposure limits into three categories:  the TWA 

for chronic exposures, the short-term exposure limit (STEL) for recognized acute effects, 

and the ceiling limit for “concentrations that should not be exceeded during any part of 

the work exposure” (ACGIH, 2008).  While every chemical listed in the TLV® booklet 

has a specific TWA, not all chemicals, to include coal dust and silica, have STELs or 

ceiling limits.  Nonetheless, the ACGIH recommends controlling all excursions above the 

TLV® in addition to controlling exposures below the 8-hour TLV® TWA.  Specifically 

for hazardous substances without a published STEL or ceiling limit, the ACGIH 

recommends the application of two exposure levels to control excursions.   

“Excursions in worker exposure levels may exceed 3 times the TLV®-
TWA for no more than a total of 30 minutes during a workday, and under 
no circumstances should they exceed 5 times the TLV®-TWA, provided 
that the TLV®-TWA is not exceeded.”  (ACGIH, 2008)  
 

In addition to evaluating exposures using the TLV® TWA, this research effort 

accounted for excursion limits that exceeded three times the TLV® for greater 

than 30 minutes and those which exceeded five times the TLV®.   

Assumptions  
  
1. For the sake of applying the most stringent standard, coal dust was compared to 100% 

anthracite coal and 0% bituminous coal.  However, it can be argued that some level of 

bituminous coal is always present.   
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2. Silica and coal dust are hazardous substances with the potential to cause adverse 

health effects if exposures are uncontrolled.    

3. Probabilistic independence is assumed because exposures at the Area B heat plant are 

independent from exposures at the Kitty Hawk heat plant.  Additionally, exposures on 

any given day are unrelated to the exposure from any day prior.  However, exposures 

within the same sample event are interdependent to one another.   

Implications 
 

The implications for the adoption of the AFIT EAS are many.  In general, a 

standardized EAS is needed because risk assessments made on a very few number of 

samples could yield conclusions that place workers at increased risk to injury and illness.  

Specifically, the tier-1 module provides a screening tool to reduce theoretically 

unnecessary sampling of gases and vapors through conservative exposure modeling 

calculations.  The tier-2 module emphasizes the use of DRI, which provides immediate 

results.  Together, tier-1 and tier-2 skill sets would enhance and improve the tactics, 

techniques and procedures needed for deployed and contingency operations though 

tangible garrison usage.  Lastly, the standardized approach of the tier-3 integrated 

sampling module provides the BEE with a clear confidence interval on the exposure 

assessment so that the risk assessment is objective with a better understanding of the 

potential error in the determination.   

Document Overview 
  

The remainder of this thesis will offer the following sections: literature review, 

methodology, results and analysis, and conclusions and recommendations.  The literature 
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review at Chapter II provides a synopsis of existing published knowledge pertaining to 

occupational health issues related to exposure assessment strategies.  This includes a 

review of some of the key concepts for addressing and evaluating any EAS.  A detailed 

discussion of the methodologies for the air sample collection and the process employed in 

the AFIT EAS field evaluation is found at Chapter III.  Discussion along with the 

analysis of the results to answer the research questions are at Chapter IV.  The thesis 

concludes at Chapter V with a summary of the results, their impact on prospective AF 

BEE doctrine and closes with the submission of further research options for the 

consideration of future students and researchers.  
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II. Literature Review 

Chapter Overview 
  

 The purpose of the literature review is to provide a comprehensive appraisal of 

the current state of knowledge related to key components of the EAS through the 

evaluation of relevant source documentation.  In addition, the literature review provides a 

framework to introduce, in more detail, the principle concepts vital to a clear 

understanding for which the research methodologies and conclusions are founded.  This 

surveillance of the foundational practices in EAS, lead to the demarcation among what is 

accepted, disputed and yet unknown for which further research, such as this, can build.     

Exposure Profile 
 

The first fundamental principle required for both understanding and evaluating an 

EAS is the concept of an exposure profile.  Hewett defines the exposure profile as:  

“The current distribution (i.e., probability density function) of exposures 
for a worker, or a group of workers that have been aggregated by 
similarity of work environment and work conditions.  Typically, this 
distribution is well described using the lognormal distribution 
model.”(Hewett, 2005) 
 

Hewett links the notion of the lognormal distribution with the definition of an 

exposure profile.  Random House Dictionary.com defines lognormality as, “noting or 

pertaining to a logarithmic function with a normal distribution, or the distribution of a 

random variable for which the logarithm of the variable has a normal 

distribution.”(lognormality)  The lognormal distribution has routinely been used to 

characterize environmental exposure sample data first by the empirical observations of 

coal dust exposures (Oldham, 1953) and was later expanded as a “general rule” for 



12 

describing exposure profiles of most environmental data (Esmen, et al., 1977).  “The 

lognormal distribution model is often used when zero is the physical lower limit for 

possible values, large values occasionally occur, and the processes that generate or 

control exposures tend to interact in a multiplicative manner (Hewett, 2001).”   

Accepting the assumption that the underlying exposure profile is lognormally 

distributed ultimately allows the application of parametric statistics to the exposure 

profile.  The exposure profile for each worker or similarly exposed group (SEG) of 

workers is completely characterized by two fundamental components of the lognormal 

distribution called the geometric mean (GM) and geometric standard deviation (GSD) 

(Rock, 1982). 

The GM is “a measure of central tendency [or average] for a lognormal 

distribution” (Leidel, et al., 1977).  The GSD is “a measure of relative dispersion 

(variability) of a lognormal distribution” (Leidel, et al., 1977).  Figure 1 illustrates the 

interaction of these key concepts by showing four hypothetical lognormal exposure 

profiles each with a constant GM of 1.0, yet with different GSDs.  As the GSD increases, 

the exposure profiles become less and less symmetrical about the GM such that the 

curves become more skewed to the right by outliers.  Another perspective on Figure 1, is 

that for the GM to remain fixed at 1.0 it takes a disproportionately large number of low 

samples (represented by the hump to the left of 1.0) to compensate for a few elevated 

exposures trailing further out from the GM to the right.  Hewett suggests that GSDs can 

be categorized using a rule of thumb, such that, exposure variability less than 1.5 is 

considered low, between 1.5 and 2.5 is considered moderate, greater than 2.5 is high and 

over 4.0 is unusually high (Hewett, 2001).   
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Figure 1: Lognormal PDF of various GSDs all with a GM of 1.0 

In the context of industrial hygiene, exposure data is collected for the purpose of 

comparison to a standard with the intention of controlling the toxicological risk to 

exposed workers.  To resolve the multitude of exposure standards and to generalize the 

illustration, Rock, defines a standardized exposure, x, as being:   

“…equal to the actual time-weighted-average exposure (TWA) divided by 
the applicable permissible exposure limit (PEL).  The TWA is measured 
over the same period used to define the PEL, be it an instantaneous grab 
sample, a 5 to 15 minute short-term sample or an 8-hour full-period 
sample.” (Rock, 1982) 
 

Equation 1: Standardized Exposure, x 
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Additionally, theta (θ) is often used to represent the exceedance fraction, defined 

as the “the fraction of full-shift, time weighted average (TWA) exposures that exceeds 

the exposure limit; [or] the fraction of an exposure profile that exceeds the exposure 

limit.” (Hewett, 2005)  The exposure profile can now be defined if any two of the three 

parameters is known:  (GM, GSD), (θ, GSD), or (x, GSD) (Rock, 1982).  

The last fundamental concept used in the evaluation of the EAS, covered in this 

section, is the 95th percentile (X0.95).  The 95th percentile is the value in which 95% of a 

group (or the population) is included.  In the case of a comprehensive exposure 

assessment, the group in question is the SEG.  Therefore, the estimate of the upper X0.95 

of the exposure profile of the SEG is judged in relationship to the occupational exposure 

level (OEL) as a means for determining whether the exposure is controlled or 

uncontrolled as summarized in Table 1, reproduced from the AIHA Strategy (Mulhausen, 

et al., 2003).   

Table 1: Exposure Categorization: Based on an Estimate of the X0.95 and the OEL 

Category Statistical Interpretation 
Based on Exceedance Based on X0.95 

4      > 5% exceedance of the OEL              X0.95 > OEL 
3      > 5% exceedance of the 0.5 x OEL           OEL > X0.95 > 0.5 x OEL 
2      > 5% exceedance of the 0.1 x OEL  0.5 x OEL > X0.95 > 0.1 x OEL 
1 Little to no exceedance of the 0.1 x OEL                          X0.95 < 0.1 x OEL 

 
 Hewett categorized descriptively the exposures as uncontrolled, poorly controlled, 

controlled, well controlled, or highly controlled from the AIHA’s statistical 

interpretations.  Table 2 summarizes Hewett’s classification system (Hewett, 2005).  
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Table 2: Exposure Categorization: Qualitative Description 

Category Exposure 
Category Qualitative Description Recommended Statistical 

Interpretation 
0 uncontrolled  A large percentage of the 

exposures exceed the OEL. 
P(c > OEL) >> 0.05 

1 poorly-
controlled  

Exposures frequently exceed 
the OEL. 

P(c > OEL) > 0.05 

2 controlled Exposures infrequently exceed 
the OEL. 

P(c > OEL) ≤ 0.05 

3 well-
controlled 

Exposures infrequently exceed 
50% of the OEL and rarely 
exceed the OEL. 

P(c >0.5 x OEL) ≤ 0.05 
P(c > OEL) ≤ 0.01 

4 highly-
controlled 

 Exposures infrequently 
exceed 10% of the OEL. 

P(c > 0.1 x OEL) ≤ 0.05 

 

These fundamental statistical concepts are vital to the understanding of the field 

evaluation of the three EAS’s.  However, for additional concepts and background for 

further insight, see Appendix A:  AFIT EAS.  While these statistical concepts are the root 

from which the field evaluation stems, the individual distinctions of each EAS, covered 

in the next section, branch forth from these common principles.   

Compliance and Comprehensive Exposure Assessments 

 The field evaluation of the AFIT EAS by comparison with the OSHA EAS and 

AIHA EAS is rooted in the philosophical comparison between a compliance 

methodology and a comprehensive methodology of exposure assessment, which are the 

underpinnings of the OSHA EAS and the AIHA EAS, respectively.  As mentioned in 

Chapter I, some of the distinctive elements of the compliance strategy are that it relies 

heavily on a point estimate of exposure in reference to the maximum risk employee 

(MRE) (Hewett, 2001), also known as the worse case exposure, with the purpose of 

maintaining compliance with a PEL.  However, Mulhausen concedes that for 
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organizations with limited funding, the worst-case approach may be an appropriate 

starting place (Mulhausen, et al., 2003). 

In contrast, the comprehensive strategy elevates the question from “Are we in 

compliance with the PEL today?” to a more responsible question, “Are we in compliance 

with all OELs every day?” (Hewett, 2008)   

Mulhausen defines the comprehensive strategy as follows:  

“The comprehensive strategy is directed at characterizing and assessing 
exposure profiles (exposure average and variability) that cover all 
workers, workdays, and environmental agents.  These exposure profiles 
are used to picture exposures on unmeasured days and for unmeasured 
workers in the similarly exposed group [SEG].  In addition to ensuring 
compliance with OELs, this strategy provides an understanding of the day-
to-day distribution of exposures.  Exposure assessment findings can be 
used to address present-day health risks and construct exposure histories.  
If a historical database is maintained, the exposure assessment data may be 
used to address future health issues for individual workers and/or groups 
of workers.  In the latter case, the data may be used to support 
epidemiological studies.”(Mulhausen, et al., 2003) 

 
One of the fundamental distinctions debated between these two methodologies is 

the intentionally biased assessment of the MRE or by random sampling the assessment of 

the exposure profile of a SEG.  However, this argument is not new.  Decades ago, 

industry leaders discussed these same questions, “Should monitoring efforts be directed 

toward characterizing worst-case exposures?  Should monitoring be done randomly, 

systematically, or based on professional judgment?”  (Roach, 1987)  Today there is still 

no universally accepted answer to these questions.  However, to evaluate properly the 

benefits and limitations of these strategies, an understanding of their original motivation 

gives perspective to the circumstances best suited toward their service.   

 The compliance viewpoint traces its beginnings to a time before the development 

of personal monitors when the sheer physical difficulty of collecting a sample was the 
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driving factor toward surveillance using short grab or partial period samples.  Rappaport 

relates,  

“Because monitoring was so difficult in those days, occupational 
hygienists attempted to identify highly exposed individuals and to 
ascertain whether their exposures were in the acceptable range, thereby 
placing an upper bound on the exposure for the entire group.  This bias 
towards high levels, referred to as worst-case sampling, became so deeply 
rooted in professional practice that it persisted after the development of 
personal monitors, (Leidel, et al., 1977; Roach, et al., 1967) and is still 
encouraged in some quarters (Hewett, 1997).  The practice probably 
continues because worst-case sampling is expedient within the confines of 
compliance testing.” (Rappaport, 2000) 

 
Rappaport outlines four reasons that worst-case sampling should be discouraged.  First, 

studies indicate that hygienists are often inconsistent in successfully classifying 

exposures as high, medium or low based upon observation (Kromhout, et al., 1987; Post, 

et al., 1991).  Second, the worst-case worker must be selected a priori, therefore, the 

unpredictability of key determinants of exposure such as the process, the duration, the 

environment, and the worker, can confound the anticipated worst-case worker as opposed 

to the subsequent true worst-case worker (Olsen, et al., 1994; Olsen, et al., 1994).  Third, 

statistical tools are invalidated by the deliberate biasing of results (McClave, et al., 2008).  

Lastly, a statistically invalid exposure assessment leads to an equally invalid risk 

assessment (Ulfvarson, 1983; Olsen, 1996).   

The compliance assessment strategy justifies these shortcomings by presenting 

the logical argument that if the maximum risk worker is sufficiently protected then the 

entire cohort of fellow workers is adequately protected.  Moreover, if the maximum risk 

worker’s exposure assessment is found within occupational exposure limits, therefore, it 

is reasonable to assume that all similarly exposed workers are likewise within limits.  

Hewett describes these shortcomings and benefits as follows:  
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“The ability of industrial hygienists to reliably select one or more 
maximum risk employees from an exposure group has been questioned by 
several researchers.  Furthermore, the NIOSH strategy will not reliably 
detect unacceptable work environments, even when the true exceedance 
fraction greatly exceeds 0.05 (Tuggle, 1981).  Consequently, one should 
view the NIOSH scheme as the basis for a minimalistic exposure 
monitoring program that is best suited for auditing work environments 
where exposures were previously determined, by a comprehensive 
exposure assessment, to be controlled, well-controlled, or highly-
controlled.  Nonetheless, for initial evaluations or where resources are 
limited or re-sampling intervals are broad, the MRE concept is still 
recommended and commonly used by industrial hygienists as a means of 
efficiently determining the acceptability of the work environment for the 
members of an exposure group.”  (Hewett, 2001) 

 
Another perspective to a potential pitfall of the worst-case worker strategy relates 

to a gradual shifting away from the worst-case strategy in favor of a representative or a 

random strategy.   

“Sampling strategies are often targeted toward anticipated worst case 
exposures...  If assessment strategies changed during the course of a study 
from monitoring worst case exposures to sampling workers randomly 
(where the biased results are likely to have yielded higher levels than what 
would have been obtained had random sampling been conducted), 
(Ulfvarson, 1983; Olsen, 1996), then it is also possible that exposures 
could have seemed to decline even when they remained unchanged.”  
(Symanski, et al., 1998) 
 

A conceivable scenario is easily envisioned that fits nicely with Symanski’s findings.  A 

hypothetical industrial hygienist chooses an MRE as a matter of expediency, possibly 

anticipating a controlled exposure, however, later finds the exposure to be higher than 

first expected.  Therefore, due to the absence of a formalized EAS, and in the name of 

“professional judgment”, additional sampling is conducted using a strategy involving 

workers that are more representative or even a random selection of workers.  While 

nothing has been done to reduce the workplace exposure, this revised strategy confirms 

the original expected level of exposure.  Although the costs of additional sampling were 
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increased, the overall cost to the organization is minimized when weighed against with 

the cost of an engineering control or the establishment and sustainment of a respiratory 

protection program.  While the questionable motives of this hypothetical industrial 

hygienist would be difficult to objectively evaluate, Symanski’s findings show the 

plausibility of such a practice.  The argument can be made that in light of the ABIH code 

of ethics (American Board of Industrial Hygiene, 2007), a “Sample-Until-You-Get-What-

You-Want” assessment strategy is unlikely; however, the establishment of a formal EAS 

by an organization lacking one would contribute toward the limitation of potential 

(un)professional judgment.   

There are, however, proposed benefits to the compliance exposure strategy.  

Mulhausen concedes that for organizations with limited funding, the worst-case approach 

may be an appropriate starting place (Mulhausen, et al., 2003).  Hewett give a number of 

circumstances for which non-representative sampling have application.  

“Practically speaking, however, non-representative sampling has its uses.  
It is both reasonable and efficient to collect measurements solely on days 
of expected maximal exposure and/or solely from employees known or 
suspected to routinely experience the greatest exposures.  It is also 
reasonable in many industrial environments to collect measurements in 
campaign fashion (i.e., on consecutive days), rather than in a strictly 
random fashion, because in most cases there is little serial correlation 
between measurements (Symanski, et al., 1994).  When evaluating 
exposures relative to a short-term OEL or ceiling limit OEL, the usual 
strategy is to purposefully sample during periods that are representative of 
peak or maximum probable exposures (Mulhausen, et al., 1998; Leidel, et 
al., 1977).” (Hewett, 2001) 

 
  Those who follow a comprehensive exposure assessment strategy go to great 

lengths to remain as random in the selection of a worker within an SEG as possible.  

During an exposure assessment of welders, Susi conveyed this idea, “The importance of 

not biasing the collected data by selecting workers who might represent ‘worst case’ or 



20 

‘best case’ exposure scenarios was emphasized during training and at opening meetings.” 

(Susi, et al., 2000)  She went on to describe that this did, however, involve guidelines to 

selecting workers that would be engaged in welding for a pre-established minimum 

duration.  Additionally, due diligence was taken to select workers which would perform 

“typical” or representative work.  The random nature of test subject selection did not 

inhibit qualifying the pool of workers to meet the goals of the sample protocol.   

Chapter Conclusion  
 

In summary, survey of the published literature shows that the benefits of the 

compliance strategy tend to outweigh the limitations of additional random sampling it 

requires.  Due to a preponderance of data in favor a comprehensive EAS, the AFIT EAS 

was designed foundationally as a comprehensive strategy.       

Whereas the statistical tools and exposure classifications introduced in this 

chapter can be extremely useful in categorizing and describing an exposure profile in 

relationship to an OEL, the comprehensive exposure strategy is not enforceable 

regulatory under US Law.  Interim Guidance 48-146, dated 14 March 2003, supplement 

to Air Force Instruction (AFI) 48-145, Air Force Occupational Health Program, provides 

standardizes procedures for the collection, analysis, management, and communication of 

occupational health information.  Also, it gives some guidance similar to the concepts 

addressed in this chapter regarding the use of statistical tools and guidelines for sampling.  

However, at the time of this writing there was currently no official Department of 

Defense or Air Force policy which implements an EAS or directs the classification of 

exposure profiles using exceedance fractions or upper X0.95..  For this reason, the study 
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was undertaken to validate the efficacy and economy of the AFIT EAS for the 

consideration of the Air Force Medical Support Agency and BEE Corporate Board.   
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III. Methodology 

Introduction 
 

This chapter will discuss and describe the study methodology including the 

sample data collection procedure, data analysis, and EAS comparison.  The chapter 

begins with air sample collection that was foundational to the subsequent EAS evaluation 

and comparison.  The driving questions during the exposure assessment portion were, 

“What is the true nature of this exposure?” and “Are workers overexposed and if so how 

often?”  To answer these questions, exposure criteria had to be established.     

Exposure Criteria  
 

Several governmental institutions and organizations publish exposure standards.  

This study looked at the three most common occupational health standard propagators:  

ACGIH, OSHA, and NIOSH.  The 2008 ACGIH® TLV® booklet lists the respirable 

(based on cyclone sampling) TWA for crystalline silica at 0.025 mg/m3, with an A2 

designation indicating it as a potential human carcinogen (ACGIH, 2008).  In 2006, the 

ACGIH® combined quartz and cristobalite into a single TLV® TWA under the heading 

crystalline silica.  As part of the reclassification, two less common forms were withdrawn 

– tridymite and tripoli (ACGIH, 2008).  Therefore, analytical results for crystalline silica 

are listed as quartz and cristobalite, found at Appendix B:  Sample Results.   

The Occupational Safety and Health Administration (OSHA) permissible 

exposure limit (PEL) standard for an 8-hour TWA for crystalline silica (as respirable 

quartz) is calculated using a formula found under the general industry standard for 

mineral dusts at Table Z-3 of 29 Code of Federal Regulations (CFR) 1910.1000.  The 

formula generates a specific standard for the dust exposure based on the silica content 
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given as 10 mg/m3 divided by the value "%SiO2 + 2".  The highest quartz level collected 

during this study was 2.2% SiO2 (see Appendix B:  Sample Results, for details).  This 

percentage level would translate to an exposure limit of 2.4 mg/m3 (as seen in Equation 

2).  This PEL is two orders of magnitude less protective than the ACGIH® TLV® of 

0.025 mg/m3.   

Equation 2: Calculation for Silica PEL 

 

Coincidently, the OSHA PEL 8-hour TWA for coal dust, containing less than 5% silica, 

found as well in Table Z-3 is also 2.4 mg/m3.  The 2008 ACGIH® TLV® for respirable 

coal dust is composed of anthracite coal dust at 0.4 mg/m3 and bituminous coal dust at 0.9 

mg/m3, each significantly more stringent than the OSHA PEL.  (ACGIH, 2008)   

NIOSH establishes recommended exposure levels (RELs) based on human and/or 

animal toxicological data.  While compliance with federal OSHA standards is obligatory, 

RELs, as the name implies, are guidelines based on both health effects and the 

technological feasibility for controlling workplace exposures at the proposed levels 

(NIOSH, 2005).  The NIOSH REL TWA for respirable crystalline silica is 0.05 mg/m3, 

double the ACGIH® TLV®.  The NIOSH REL TWA for coal dust in general is 0.9 mg/m3 

without regard for the anthracite or bituminous varieties.     
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Table 3: Comparison of Exposure Standards 

Institution Terminology Constituent Limit 
(mg/m3) 

ACGIH® TLV® Coal 0.4 
Silica 0.025 

OSHA PEL Coal 2.4 
Silica 2.4 

NIOSH REL Coal 0.9 
Silica 0.05 

 

Based on the most conservative of the exposure limits, summarized in Table 3, 

the ACGIH® TLV® for silica at 0.025 mg/m3 and the ACGIH® TLV® anthracite coal dust 

at 0.4 mg/m3 were used in this study.  

Methodology for Sampling 
 

Coal handlers at each of the two heat plants on Wright-Patterson Air Force Base 

(WPAFB) were the subjects of the air-sampling portion of this study from 17 Dec 2008 – 

4 Jan 2009.  The heat plant at building 1240 in Area C supports the heating of facilities in 

both Area C and Area A, of WPAFB.  The heat plant at building 770 in Area B supports 

only Area B facilities; however, it supplies hot water in addition to ambient heat.  Coal is 

delivered to each plant by truck, Monday through Saturday, alternating each week 

between the two heat plants.  During the day shift, the coal is unloaded directly into an 

underground hopper (#2 in Figure 2).  By means of a series of conveyor belts (#3 in 

Figure 2), coal is transported to the top of the heat plant into the bunkers situated directly 

over the furnaces (#4 in Figure 2).  One of the series of conveyor belts has the option of 

depositing or retrieving coal via storage silos (#5 in Figure 2) located between the hopper 

and the bunkers.  On days that coal is not delivered by trucks to the hopper, a bulldozer is 

used to fill the hopper from an outdoor mound of coal (#1 in Figure 2).  If coal cannot be 
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transported from the hopper to the bunkers (via dotted line illustrating underground 

conveyor belt in Figure 2), then coal from the storage silos (#5 in Figure 2) can be used 

as a backup.  Coal drawn from the silos is much drier and dustier than coal delivered by 

truck or from the storage mound.  Note that Figure 2 designations are ordered by the 

progressed of coal starting at the outside mound (#1) to the underground hopper (#2) 

transported via conveyor belts (#3) primarily to the furnace bunkers (#4) but with the 

option of replenishing the silos (#5).  

 

Figure 2: Building 770 Heat Plant Area B (Google, 2009) 

The heat plant operates on three, 8-hour shifts; however, it is during the day shift that one 

coal handler fills the bunkers.  The duration of the filling process is dependent on the 

demand for heat and hot water from the day prior, which is based on outdoor 

temperature, the day of the week, and whether the bunker was filled fully the day before.  

The range in duration of the filling process during the sampling campaign was from 39 to 

216 minutes.   
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The worker manually positions a shuttle truck to fill coal evenly across the length 

of the bunker house (approx 110 ft long).  The Area B facility’s worker must leave the 

main filling area every 15 – 20 minutes to monitor and clear a grate that filters large 

chunks of coal.  Except for these 2 – 3 minute absences, the coal receiver is in the bunker 

house exposed to the ambient dust levels for the duration of the process.     

Twenty-six personal breathing-zone air samples for respirable coal dust and 

crystalline silica were collected from heat plant personnel engaged in filling the furnace 

bunkers at the two coal powered heat plants.  In line, integrated air samples and DRI 

samples were simultaneously operated using one common sample train.  One-minute 

average concentrations of respirable dust were logged using the DataRAM® with an 

attached cyclone (model GK 2.05) to separate the respirable particles from total 

aerosolized dust.     

The total respirable dust exposure was collected on pre-weighed 5.0-µm pore size, 

polyvinyl chloride (PVC) filters (SKC, Inc., Eighty-four, PA) supported by a cassette 

filter holder attached to the DataRAM®.  The filters were sampled and analyzed 

according to the NIOSH method 0600 – PNOR, Respirable and 7500 – Silica, 

Crystalline, by XRD.  A portable air-sampling pump, the Gilian® GilAir5® – Tri-Mode 

Air Sampler, (Sensidyne LP, Clearwater, FL) was used to draw the sample through the 

DRI and the filter cassette.  Air was drawn at a flow rate between 2.66 to 2.77 liters per 

minute (L/min) as outlined by NIOSH method 0600 and 7500 and prescribed by the 

instruction manual for the DataRAM’s® GK 2.05 cyclone.  Method 0600 uses gravimetric 

methods to determine total respirable concentration as a function of weight and air 

volume sampled.  Using the same sample, X-ray diffraction determines the percentages 
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of the three most common forms of crystalline silica to include quartz, cristobalite and 

tridymite.  Bulk samples were collected and analyzed using polarized light microscopy to 

determine the percentage of bituminous and anthracite coal.  The high variability in the 

bulk sample results prevented the use of a synthetic mixed sample exposure limit.  

Therefore, the most stringent standard using the ACGIH® TLV® for respirable anthracite 

dust of 0.4 mg/m3 was applied, without bias, to all sample analysis for coal dust.   

Pre- and post-calibration measurements for the GilAir5® flow rate were measured 

using the Bios DryCal® DC2-B (Bios International Corporation, Butler, NJ), in 

conjunction with a DC-MC-1 frictionless piston attachment, serial number 100664 

(DryCal).  Pre- and post-calibration flow rates were derived using an average of 10 

consecutive flow measurements.  All pre- and post-calibrations were performed the same 

day of the sample event.  All post-calibrations were within 10% of the pre-calibration 

reading.  A detailed tabulation of the flow rates, calibration and sample volumes can be 

found at Appendix D: Tabulated Sample Data, Table D1 and Table D2.  As part of the 

pre-calibration procedures, the DataRAM® was zeroed using a high efficiency particulate 

air (HEPA) filter according to manufacture instructions with a maximum pre-calibration 

concentration of 0.004 mg/m3.  During the post-calibration sequence, the DataRAM’s® 

zero calibration was again checked using the HEPA filter with a maximum post-

calibration concentration of 0.028 mg/m3.  

Following each post-calibration, the DataRAM’s® GK 2.05 cyclone was 

dismantled and cleaned so that the following pre-calibration would be as low as 

reasonably achievable.  Figure 3 depicts the typical configuration used in each calibration 

event.     
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Figure 3: Calibration Configuration 

 
Two sample blanks were submitted in conjunction with the above air samples.  

One blank sample was a field blank, in which the cassette was taken 4 Jan 2009 into the 

field and exposed to all ambient conditions, as were the two used samples cassettes.  The 

second blank was a trip blank and only exposed to the same shipping and storage 

conditions between the manufacture, storage, and the analytical lab.  Neither blank 

sample had measureable contamination above the limit of detection.   

 In addition to the DataRAM®, a Quest Temp °34®, Thermal Environment 

Monitor, (Quest Technologies Inc., Oconomowoc, WI) (WBGT) with probe sensor 

attachment, was used to log the one-minute average relative humidity.  As the humidity 

increases, the DataRAM® over-responds to the additional moisture content of the particle.  

(Chakrabarti, et al., 2004) A correction factor was then applied to resolve variations in 

relative humidity.  
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A variety of equipment and supplies were used to collect the exposure data of this 

study.  Table 4, summarizes the apparatus and collection media.  

Table 4: Apparatus for Sample Collection 

Apparatus/ 
Supplies Manufacturer Model Serial Number 

DataRAM® Thermo Electron™ PDR-1200 5999 
GilAir5® Gilian™ 800885 13873 
DryCal® Bios International™ DC2-B 100966 

WBGT Quest 
Technologies™ Temp °34® TEG040172 

Sample Filter SKC, Inc. ™ 5.0-µm, 37-mm, 
PVC 

Unique to each 
cassette  

 

Methodology for EAS Evaluation 
 

 Results from the sampling campaign were listed chronologically in a spreadsheet 

table in Microsoft™ Excel® (Microsoft Corp., Seattle, WA) (Excel®).  Using a random 

number command [=Rand ( )], random numbers corresponding to each of the 26 sample 

events were generated.  The sample event pair with the largest random number generated 

was selected as the single representative sample.  Each sample was replicated 10 times 

with a new batch of random numbers.  Therefore, the OSHA EAS, which calls for one 

integrated sample, had 10 uniquely picked random numbers associated with one of the 26 

available sampling events.  Similarly, the AIHA EAS, which calls for six samples, had 

six sets of 10 uniquely paired random numbers, such that any of the 26 sample events 

could be chosen each round.     

Unique to the AFIT EAS was the explicit use of DRI data in the first stage of 

three samples.  This allowed for the application of excursion limits as well as TWA 

limits.  The optional second stage selects three additional random samples from the 
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integrated sample analysis, in the event that there are any inconclusive sample results 

from the DRI data.   

Assumptions 
 

 Spiked samples with a known mass for evaluating the analytical laboratories’ 

accuracy and precision were not accomplished.  Nor was there a way to split samples 

between two different labs for comparison.  Laboratory results were assumed valid.    
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IV. Results and Analysis 

Chapter Overview 
  

The purpose of this chapter is to present the results and analysis of this research.  

As such, the data collected from the survey methods described in chapter III are 

presented in this chapter.  The presentation of the findings includes an analysis of the 

sampling campaign as well as an analysis of the exposure assessment strategies.   

Analysis of Sampling 
 

The sample analysis consists of both the analytical results and the DRI results.  

The analytical results were for air samples at the breathing-zone and bulk coal samples.  

Raw results were converted to process mean concentrations and an 8-hour TWA by 

standard calculations so that inferences with regard to exposure limits could be assessed.  

The 8-hour TWA, when applied to a partial period sample, relies on the assumption that 

there is zero exposure to the agent for the remainder of the work shift.  For the sake of 

research, the task-TWA (the TWA spanning the duration of the task regardless of the 

length of exposure) was also used for a side-by-side evaluation to simulate exposures for 

which the zero exposure assumption would be judged invalid.   

Analytical Results  
 

The analytical results for the sampling campaign for personal and bulk samples 

were received 3 February 2009 and 18 February 2009, from Bureau Veritas North 

America, Inc. under work order No.: 09010407, reference FA8900-07-A-9002IWPAT 

AFB/09N040.  Copies of the results can be found at Appendix B:  Sample Results.   
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By using a polarized light microscope, Bureau Veritas reported the bulk sample 

from the Area B heat plant as containing 90% anthracite coal and 10% bituminous coal.  

Conversely, the bulk sample from the Area C heat plant contained 5% anthracite coal and 

95% bituminous coal.  Due to this wide range in the constituency of the coal, the more 

stringently regulated anthracite coal was used as the sole agent of exposure.    

Bureau Veritas reported the average concentration in mg/m3 by taking the weight 

of coal dust in milligrams and dividing it by the volume of air sampled in cubic meters, 

understanding that 1000 liters equals one cubic meter.  Using this average concentration, 

multiplied by the task duration in minutes, then divided by 480 minutes (8 hours) derives 

the 8-hour TWA.  A detailed tabulation of the task and 8-hour TWA concentration results 

can be found at Appendix D:  Tabulated Sample Data, Table D3.  

Equation 3: Stepwise 8-hour TWA Calculation 

 

 

 

 

 

 

DRI Results  
 

 The DataRAM® results were collected concurrently with the analytical samples.  

The 8-hr TWA and the average concentration were calculated in the same way as the 

analytical sample results.  However, rather than having a single average concentration for 
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the entire period, the DataRAM® logged a 1-minute average concentration for each 

minute of exposure.  The duration for the DataRAM® equaled that of the analytical 

samples (exceptions are covered in the limitations section of this chapter).  These 1-

minute averages were summed to derive an uncorrected overall mean similar to the 

overall mean calculated with the analytical samples.  The uncorrected mean concentration 

was then adjusted for relative humidity by using the following formula (Chakrabarti, et 

al., 2004).   

Equation 4: Relative Humidity Correction Factor 

 

where   

RH = Relative Humidity (as a decimal) 

In addition to correcting for relative humidity, compensation can also be made for 

differences in density, refractive index, and median particle size (O'Shaughnessy, et al., 

2002); however, this would have required the use of additional equipment, unavailable at 

the time of the survey. In addition, so long as the DRI measurements are corrected by 

gravimetric results, as was done in this survey, the adjusted response can be assumed 

accurate.   

Relative Humidity Correction Factor   
 

The WBGT’s clock was synchronized to the DataRAM® so the logged 1-minute average 

relative humidity results could be paired with the 1-minute average concentration results.  

The final adjusted task TWA and 8-hr TWA concentrations for the DRI samples are 

referenced at Appendix D:  Tabulated Sample Data, in Table D4.  A consolidated 
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summary of the analytical and DRI results for both the task TWA and 8-hour TWA is 

provided in Table 5. 

Table 5: Summary of Percent Exceedance for Analytical and DRI Results 

 Analytical Results DRI Results 
> Task TWA. > 8-hr TWA > Task Conc. > 8-hr TWA 

# over 0.4 mg/m3 16 2 13 2 
% Exceedance 61.5% 7.7% 50.0% 7.7% 

 

By dividing the average concentration of the analytical results by the average 

concentration of the DRI results, a conversion factor is obtained which can then be 

applied to the 1-minute average concentration log from the DataRAM®.  The range of the 

conversion factors was from 0.58 to 3.51; therefore, an average conversion factor was 

unfeasible.  A detailed list of the correction factors for matching the DRI data to the 

analytical concentration data is included at Appendix D:  Tabulated Sample Data, in 

Table D4.  Consequently, the adjusted 1-minute average analytical concentration was 

graphed in the same manner as the DRI data.  An example from the first day of sampling 

is provided in Figure 4.  Note: all graphs can be found at Appendix C:  Exposure 

Assessment Graphs.   



35 

 

Figure 4: Visual Characterization of 1-Minute Average Concentration Results 

 

Excursion Limits Results  

By adjusting the DRI sample to equal the analytical sample, excursion limits can 

be assessed for both DRI data and analytical data.  Both the cumulative 30-minute 

exceedance of three times the TLV®, equating to 1.2 mg/m3, and the instantaneous 

exceedance of five times the TLV®, equating to 2.0 mg/m3, were evaluated.  A detailed 

list of the Excursion Limit Results for DRI and Analytical Samples is at Appendix D: 

Tabulated Sample Data, Table D5: Excursion Limit Results for DRI and Analytical 

Samples.  The summary of the excursion limit results is in Table 6 below.   

Table 6: Summary of Excursion Limit Results 

 DRI   A.S.  DRI   A.S.  
> 3x TLV®  > 3x TLV® > 5x TLV® > 5x TLV® 

# over Excursion Limit  1 1 13 15 
% Exceedance 3.8% 3.8% 50.0% 57.7% 
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Analysis of EAS and Sampling Campaign 
 

An analysis of the sampling campaign (SC) was conducted to establish a 

reference point for the evaluation of each of the EAS.  This began by determining the 

exceedance fraction with regard to the censored data.  Eight out of the 26 analytical 

samples were below the detection limit (DL) equaling a 31% censored data rate.  The 

Environmental Protection Agency (EPA, 2006) offers the following recommended 

general guidelines, found in Table 7, for selecting a statistical analysis method at various 

margins of censored data.  (US Environmental Protection Agency, 2006) 

Table 7: EPA Recommended Methods for Censored Data 

Approximate Percentage 
of Non-Detects Statistical Analysis Method 

< 15% Replace non-detects with 0, DL/2, DL, Cohen’s Method [MLE] 

15% - 50% Trimmed mean, Cohen's Method [MLE],  
Winsorized mean and standard deviation 

>50% Tests for proportions 
 

Regarding the Cohen method based and the MLE method, the EPA clarifies, 

“Cohen’s method provides adjusted estimates of the sample mean and standard deviation 

that accounts for data below the detection level.  The adjusted estimates are based on the 

statistical technique of maximum likelihood estimation [MLE] of the mean and variance 

so that the non-detects are accounted for (US Environmental Protection Agency, 2006).”  

The AFIT EAS provides the following five common methods for analyzing 

censored data:  DL, DL/2, DL/√2, log-probit, and MLE.  Because the SC censored data 

percentage was within the 15% to 50% range outlined by the EPA, the MLE method was 

chosen for the AFIT EAS, (based upon the work of Attfield and Hewett (Attfield, et al., 
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1992; Hewett, et al., 2007).  The MLE method derived the following parametric statics: 

GM, GSD, 95th percentile, and exceedance fraction.     

The exceedance fraction for coal dust exposures for the task TWA was 56.7% 

with a GM of 0.5 mg/m3, a GSD of 2.6 and the 95th percentile on the mean was 2.3 

mg/m3.  The exceedance fraction for the 8-hour TWA during the sampling campaign was 

11.0% with a corresponding GM of 0.1 mg/m3, a GSD of 3.9, and with a 95th percentile 

on the mean of 0.7 mg/m3.  Exceedance fractions less than 5% or an upper 95th percentile 

less than the OEL are two common measures of an acceptably controlled exposure 

(Hewett, 2001).  Based on these sample results, the exposure profile for this campaign is 

clearly unacceptable.  An analysis of the exceedance fraction results of 56.7% and 11%, 

respectively, is interpreted as the percentage of the work force that are, on average, 

predicted to be overexposed on any given day.  Therefore, EAS results that classify or 

predict an exposure profile as unacceptable, are considered correct to the true risk 

assessment categorization.  The results summarized in Table 8 represent the statistical 

benchmarks by which all other EAS are compared. 

Table 8: Analysis of the SC results using MLE method 

  > Task TWA > 8-hr TWA 
GM (mg/m3) 0.5 1.0 

GSD 2.6 3.9 
95th percentile on Mean (mg/m3) 2.3 0.7 

Exceedance Fraction (θ) 56.7% 11.0% 

OSHA EAS Analysis 
  

The OSHA EAS was evaluated by randomly selecting one 8-hour TWA from the 

available 26 sample events, repeated 10 times.  Out of the 10 randomly selected sample 
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events, neither of the two potential overexposures was selected, corresponding to a 100% 

inaccurate acceptance of the exposure profile as controlled.   

The AFIT EAS differed from the OSHA EAS in that DRI sampling was used in 

the first phase of the 10 rounds of random samples.  Three out of the 10 rounds contained 

at least one 8-hour TWA overexposure in groups of three random sample events from the 

original 26 samples.  With the added benefit of excursion limits, the AFIT EAS reached a 

100% correct conclusion of uncontrolled exposure in the first phase of three DRI samples 

without proceeding to the final phase of integrated analytical sample collection.  A 

summary of the 8-hour TWA results is found in Table 9. 

Table 9: Comparison of the OSHA EAS to the AFIT EAS Using the 8-Hour TWA 

 Analytical Results  
OSHA EAS > 8-hr TWA 

Analytical Results  
AFIT EAS > 8-hr TWA 

# over 0.4 mg/m3 0 of 10 3 of 10 
% Correctly Classified 0.0% 30.0% 

 

A more general approach to the analysis of the OSHA EAS involves the question 

of the number of samples required, given a target confidence level and a known 

exceedance fraction.  This is a generalized approach because the true exceedance fraction 

of a specific exposure profile is known only following a sampling campaign; however, 

the application of a minimal acceptable exceedance fraction can be established as a 

matter of policy.  Regarding this research effort, the known exceedance fraction for the 

SC data was calculated to be 11% as shown in Table 8.  Assuming that having 11% of an 

organization’s work force overexposed on any given day is unacceptable, then how many 

samples would be required to have an 80% confidence that at least one sample is found 

over the 8-hour TWA?  Figure 5 used the binomial distribution to illustrate that, on 
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average, 14 samples would be required to achieve an 80% confidence.  This explains why 

out of 10 random samples, none were found over the limit.    

Regarding the task TWA results, out of the same 10 randomly selected sample 

events, the OSHA EAS selected two task TWAs with concentrations that exceeded the 

TLV® out of a potential 16 over exposures.  This corresponded to a non-parametric 

acceptance of 80% of the exposure profile incorrectly classified as controlled, even using 

the more stringent task TWA for the process duration rather than the 8-hour TWA.  

 

 
Figure 5: Binomial Distribution with 80% confidence and 11% Theta 

The AFIT EAS selected at least one overexposure in the group of three random 

samples, 10 out of the 10 rounds when compared to the task TWA, resulting in a 100% 

correct classification.  A summary of these results is found at Table 10. 
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Table 10: Comparison of the OSHA EAS to the AFIT EAS using the Task TLV® 

 Analytical Results  
OSHA EAS > TLV® 

Analytical Results  
AFIT EAS > TLV® 

# over 0.4 mg/m3 2 of 10 10 of 10 
% Correctly Classified 20.0% 100.0% 

 

A similar generalized parametric approach was used to evaluate the OSHA EAS with 

regard to the task TWA, which has a corresponding exceedance fraction of 56.7% as 

shown in Table 8.  Figure 6 illustrates that an average of only two samples would be 

required to get one sample over the exposure limit with an 80% confidence.  

 

Figure 6: Binomial Distribution with 80% Confidence and 57% Theta 

This shows that the OSHA EAS works reasonably well with extremely high exceedance 

fractions; however, for exposure profiles with significant yet relatively lower exceedance 

fractions the likelihood for detection drops dramatically.  Alternatively, it implies that the 
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use of the 8-hour TWA for partial period samples could underestimate the risk 

assessment when using a compliance EAS.   

Probability to Detect Overexposure Using Maximum Risk Exposure  
 

The strength of the OSHA EAS lies in the central idea of selecting the maximum 

risk exposure, (MRE) often used synonymously with worst-case worker.  The sample 

effort in this study only sampled the worst-case worker because only one worker 

performs this task.  With only one worker to choose from, the worst day of exposure of 

the worse-case worker would classify the exposure as MRE.  This is a subtle yet valid 

distinction to the method calculated earlier in this chapter of randomly picking from any 

of the 26 days of exposure. 

The Venn diagram in Figure 7 below illustrates the general notion of an MRE.  

From the universal set of all possible sample results that can be evaluated (represented by 

the green background), the OSHA EAS is able to select only the worst-cases (regarding 

this study, only the worst-days) from which to sample (B).  (B) is expressed as a 

percentage of the upper end of all sample results.  Within (B) are the overexposures 

represented by (A).  Regarding this study, (A) equals the two overexposures, therefore 

(A) is a subset of (B) as long as (B) is defined to be greater than two.  Generally, a 

scenario exists that there could be more overexposures (A) than there are samples defined 

as worst-case for (B).  To apply this general scenario, for which (A) is much larger than 

(B), to an actual work environment, would imply an exposure for which there is a clearly 

unacceptable exceedance of the occupational limit.  In a case of this nature, the OSHA 

EAS method for validation of an obvious overexposure hypothesis may be well suited.        
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Figure 7: Venn diagram of MRE 

In reference to the SC, the total number of samples collected is 26.  Using the 

upper 30% as an assumed cut point for the worst cases of the sample distribution then (B) 

would equate to the eight highest exposure results.  Of these eight worst cases, two were 

overexposures represented by (A).  Therefore, the other 18 of the 26 samples would be 

defined as representative exposures, not “worst-case”.  Table 11, tabulates the statistical 

distinctions between these different sets of data.   

Table 11: MRE Non-Parametric Probability 

 B B’ Total 
A 2 0 2 
A’ 6 18 24 

Total  8 18 26 
 

The probability of (A) from the total samples is expressed as follows: P (A) = N (A)/N = 

2/26 = 0.076.  The probability of (B) from the total samples is expressed as follows: P (B) 

= N (B)/N = 8/26 = 0.308.  Therefore, since (A) and (B) are not independent, the 

probability of (A) given (B) is expressed in equation 5 (Devore, 1987).   

S 



43 

Equation 5: Proportion of Overexposure within Upper Third of Distribution 

 

The variable (C) represents the likelihood that a technician is capable of selecting a 

worker-day from the worst-case portion of the distribution.  Assuming 67% of the time a 

technician can sample in the upper 1/3 of the distribution (B), this accuracy is then 

designated as P(C) equaling 0.67.  P(C) is independent of (A) or (B), therefore, the 

probability of collecting a sample from the overexposed portion of the distribution given 

the MRE is expressed in Equation 6 (Devore, 1987).   

Equation 6: Probability of Overexposure Given MRE 

 

 
The analysis of the OSHA EAS worst-case scenario is that if an industrial hygiene 

technician was 67% accurate at selecting the upper 30% of the exposure distribution from 

a SEG with a non-parametric exceedance fraction of 0.076, they would have a 17% 

probability for correctly determining this exposure profile as uncontrolled using the 

assumption of the worst-case compliance method.   

 The general form of the probability equation using substitution between equation 

5 and equation 6 is:   

Equation 7: General Form of the Worst-Case Probability Equation 
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Equation 7, can be interpreted as the original exceedance fraction (A) multiplied by the 

chance of correctly sampling a “worst-cases” exposure (C), divided by the upper cutoff 

proportion of the distribution which defines “worst-case” (B). 

Interestingly, if the capability to sample accurately the top half of the exposure 

profile were 50%, then the probability in equation 6 for P (D) would equal P (A) as seen 

below. 

Equation 8: Probability Identity Theorem 

 

Therefore, the notional benefits by using a worst-case sample method statistically 

diminish to equal that of a purely random sample with the limitations of intentionally 

biasing the data and thus invalidating the use of parametric statistical tools.  Additionally, 

the false assumption is preserved that the results are more powerful than a purely random 

sample. This is due to the belief that an enhanced selection was made by sampling the 

worst-case worker on the worst-case day.        

AIHA EAS Analysis 
 

The AIHA EAS was evaluated with similar methods as the OSHA EAS, except 

instead of a single round of 10 randomly selected sample events, six rounds of randomly 

selected events were generated 10 times.  Another distinction in the AIHA EAS is the 

evaluation of the upper 95th percentile for the group of six exposures, rather than the 

point estimate of a single exposure used by the OSHA EAS.  The 95th percentile for the 

AIHA EAS exceeded the 8-hour TWA in six out of 10 random trials.   
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The AFIT EAS has the flexibility of using either the point estimate or the upper 

95th percentile.  When measuring exposure using the 95th percentile, the distinction 

between the AIHA EAS and the AFIT EAS comes down to a matter of the number and 

type of samples collected, six analytical opposed to three DRI, respectively.  The 

accuracy of the AFIT EAS was calculated using three DRI samples randomly selected, 

replicated 10 times, in comparison to both the 8-hour TWA and the task TWA.  The 

AFIT EAS resulted in five out of 10 trials, judging against the 8-hour TWA.  However, 

when compared to the excursion limits specific to data logging capability of the DRI the 

AFIT EAS had a 100% classification of uncontrolled exposures.    

Table 12: Comparison of the AIHA EAS to the AFIT EAS Using the 8-hour TWA 

 Analytical Results  
AIHA EAS > 8-hr TWA 

Analytical Results  
AFIT EAS > 8-hr TWA 

# over 0.4 mg/m3 6 of 10 5 of 10 
% Correctly Classified 60.0% 50.0% 

 

In reference to the task TWA results, out of the same 10 randomly selected groups 

of six samples, both the AIHA EAS and the AFIT EAS selected 10 task TWAs with 95th 

percentiles that exceeded the 8-hour TWA-TLV® out of a potential 16 over exposures.  

This corresponded to perfect categorization of 100% of the exposure profiles as 

uncontrolled.  The only distinction was that the AFIT EAS took half as many samples to 

reach the same conclusion.   

Table 13: Comparison of the AIHA EAS to the AFIT EAS Using the Task TLV® 

 Analytical Results  
AIHA EAS > TLV® 

Analytical Results  
AFIT EAS > TLV® 

# over 0.4 mg/m3 10 of 10 10 of 10 
% Correctly Classified 100.0% 100.0% 
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An overall comparison of the EASs can be made by comparing the point 

estimates of the OSHA EAS (PT.) to the point estimate of the AFIT EAS (PT.) and the 

upper 95th percentile of the AIHA EAS X0.95 to the AFIT EAS X0.95.  However, a true 

side-by-side comparison between all three cannot be made.  Because multiple samples 

are required to calculate a geometric mean and geometric standard deviation with the 

purpose of deriving the upper 95th percentile as criteria for a decision, the fact that the 

OSHA EAS only uses one sample point prevents a three-way comparison.    

Table 14: Side-by-Side Comparison using 8-hour TWA 

 Sample Protocol Results > 
8-hr TWA 

OSHA EAS PT. 1 Analytical 0 of 10 
AFIT EAS PT. 3 DRI 3 of 10 

AIHA EAS X0.95 6 Analytical 6 of 10 
AFIT EAS X0.95 3 DRI 5 of 10 

 
Table 15: Side-by-Side Comparison by Task TWA 

 Sample Protocol Results > 
TLV® 

OSHA EAS PT. 1 Analytical 2 of 10 
AFIT EAS PT. 3 DRI 10 of 10 

AIHA EAS X0.95 6 Analytical 10 of 10 
AFIT EAS X0.95 3 DRI 10 of 10 

 
The AFIT EAS was more sensitive to detecting overexposures than the OSHA 

EAS, by a difference of 30%.  When the sensitivity was based on the task TWA, the 

AFIT EAS was flawless in correctly classifying the exposure profile as unacceptable 

compared with only an accuracy of 20% for the OSHA EAS.  AIHA EAS had a 10% 

greater sensitivity in detecting an overexposure than the AFIT EAS when compared to 

the 95th percentile.  When the task TWA was used, both EAS proved 100% accurate.  The 

distinction criteria between the AFIT EAS and the AIHA EAS was whether the AFIT 
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EAS could collect less samples than the AIHA while maintaining equal sensitivity and in 

every case, the AFIT EAS required half as many samples as the AIHA EAS.  

Overall results yielded accuracies between 0 and 100% and between one and six 

samples collected.  The AFIT EAS exemplified the best characteristics of an EAS by 

collecting only three samples while maintaining high sensitivity.  While the AFIT EAS 

performed nearly flawlessly, there was however, areas of this study open to significant 

improvement.  The next section will cover the most common limitations and anomalies, 

which challenged this research effort.   

Limitations and Anomalies  
 

During the course of the sampling campaign, a variety of irregularities in the data 

collection arose.  This section describes those anomalies and the action taken to account 

for their impact and a description of the limitation this caused.       

One error occurred on the 26 Dec 2008 sample at Bldg 770 at the Area B heat 

plant.  The DataRAM® lost power at 0755 hours and a new battery was installed at 0820 

hours, resulting in 25 of 141 data points lost.  The exposure concentration at the time of 

the power failure was 0.262 mg/m3 and upon return, the exposure was 0.272 mg/m3.  The 

average exposure based on the analytical sample, which continued to be collected, was a 

concentration of 3.71 mg/m3.  Therefore, since both figures were well below the average 

concentration, the 0.262 mg/m3 was applied to the lost DataRAM® measurements.  This 

had very little overall impact because all DRI samples, in general, were adjusted based on 

the analytical sample results and both are represented in the sample graphs found in 

Appendix C:  Exposure Assessment Graphs.     
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This same sample event had a related error in the exposure duration resulting in 

an error in the air volume reported for the sample number SZ089012.  The reported air 

volume was 481.68 liters, while the true volume was 377.32 liters.  The average 

concentration was reported as 2.9 mg/m3, from a mass of 1.400 mg by Bureau Veritas.  

However, when the true air volume is used, 1.4 mg/0.37732 m3 equates to a corrected 

concentration of 3.71 mg/m3.   

There were several occasions where the WBGT was not operational for the entire 

sampling event, by either starting late or ending prematurely.  When relative humidity 

data was lost, a value of 0.01 was used which mathematically preserves the original data.  

Eleven days had between 1 and 8 minutes of lost data.  A detailed tabulation of the days 

and minutes lost can be found at Table D6 at Appendix D:  Tabulated Sample Data.  The 

impact of this was minimal due to the use of the analytical data as the ultimate correction 

factor.    

There were two occasions were the GilAir5® failed.  Unlike when the DataRAM® 

failed and the gap in logged data was clearly evident, the loss of airflow in the sampling 

train can be seen by a drop to background concentration levels in the DRI.  The first 

occasion was the result of tampering with the pump from the test subject.  It occurred at 

approximately, 0812 hours on 31 Dec 2008 at the Area B heat plant.  The pump was 

restarted at 0834 hours, resulting in a loss of 22 minutes of sample data.  The exposure 

concentration at the time of the pump failure was 0.155 mg/m3 and upon return the 

exposure was 0.107 mg/m3; however, according to the analytical sample the average 

exposure concentration was 0.498 mg/m3.  Therefore, since both figures were below the 

average concentration, a value of 0.1 mg/m3 was applied to the lost DataRAM® 
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measurements.  The benefit to using 0.1 mg/m3 is that it is representative of a 

conservative background level rather than using zero, which is unrealistic.  Using a 

representative value for the DRI sample makes the correction factor when applied to the 

analytical samples more comparable.   

The other occurrence of a GilAir5® pump failure was on 2 Jan 2009 at the Area B 

heat plant.  The cause of the pump failures was due to three occasions of the sample hose 

crimping when the test subject sat in a chair.  This was the most challenging of the 

anomalies for which to account due to the uncertainty as to when the pump went from a 

restricted flow to a complete pump failure.  Review of synchronized video footage could 

not identify pump failure; therefore, to maintain consistency, the value of 0.1 mg/m3 was 

again applied to the 42 minutes of missing data.   
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V. Conclusions and Future Research Considerations  

 

Chapter Overview 
 

Chapter V provides a discussion on the survey results and analysis as related to 

the original research objectives.  Furthermore, an assessment of the strengths and 

limitations is presented, leading to suggested methodology improvements.  This chapter 

concludes with recommendations for future research.    

Research Summary 
 

The primary purpose of this research effort was to answer the research questions 

posed in Chapter I.  These questions were related to the accuracy and efficiency of the 

AFIT EAS in comparison to the OSHA EAS and the AIHA EAS when tested against an 

actual sample campaign.   

The first question was, “Does the AFIT EAS result in a correct risk assessment 

outcome more often than the OSHA EAS?”  It was shown in Chapter IV that the AFIT 

EAS reached the correct risk assessment outcome 30% of the time compared to the 

OSHA EAS of a 0% success rate, when judged against the 8-hour TLV®-TWA.  Through 

further binomial testing, the OSHA EAS required, on average, 14 individual sampling 

events to detect just one overexposure with 80% confidence at the SC exceedance 

fraction of 11%.  However, both strategies improved when judged against the task TWA.  

The success rate of the OSHA EAS rose to 20% while the AFIT EAS rose to 100%.  The 

OSHA EAS also saw improvement in the average number of samples required to detect 
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one overexposure from 14 down to two.  Nevertheless, in every instance the AFIT EAS 

proved more sensitive to overexposures than the OSHA EAS.   

The second research question was, “Does the AFIT EAS reach the correct risk 

assessment outcome using fewer integrated samples than the AIHA model?”  Results 

showed that the AIHA EAS was able to reach a 60% success rate in assessing risk when 

compared to the 8-hour TWA through the collection of six integrated samples.  The 

AIHA EAS improved to 100% when compared to the task TWA.  However, the AFIT 

EAS was able to reach a 100% conclusion in both categories through the analysis of three 

DRI results validated by three integrated samples.  Therefore, in every instance, the AFIT 

EAS collected half as many samples while resulting in a 100% success rate in hazard 

characterization.   

The third research question is more subjective than the first two, “What benefits 

(if any) does the AFIT EAS bring in addition to relative increased accuracy and fewer 

samples?”  Overwhelmingly, the AFIT EAS encourages the use and mastery of DRI.  

Due to their rapid return of results, DRIs allow for the intervention of control strategies 

on the spot.  Being able to rapidly and accurately characterize a hazard and implement a 

mitigating control is extremely valuable in garrison, but even more so during a 

contingency or deployed environment when waiting weeks for an analytical lab is not 

feasible.  Instituting regular usage of DRIs builds confidence and expertise in the correct 

function of the equipment and gives familiarity to the specific limitations.  The additional 

insight gained though the use of an EA time history graph can clearly give distinction to 

the determinants of exposure as well as nodes of control.  For example, Figure 4 “Visual 
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Characterization of 1-Minute Average Concentration Results” from Chapter IV is 

reproduced here with the addition of a corresponding exposure characterization.   

The regions of the graph circled in green correspond to occasions when the 

worker left the bunker area to check a grate which filters chunks of coal too large for the 

furnace.  The location of the grate is where the coal enters the plant from an outside 

conveyor belt, which is partially open to the outside air.  This clearly corresponds to the 

lowest exposure levels during the shift.  Traditional analytical air sampling is typically 

motivated by a desire to find incidences of high exposure; conversely, excessively low 

exposures are undesirable due to the potential for a non-detect value.  With regard to 

DRIs, low exposures have the benefit of providing “nodes of localized control”.  These 

control nodes can be evaluated and exploited, by asking, “How can these low exposures 

be increased in frequency or duration?” and “Can the behavior which lead to this short 

term control of exposure be encouraged through training or other means?”  What was a 

potential limitation for the analytical method, becomes a strength when using the DRI.   
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Figure 8: Hazard Characterization and Interpretation 

Concerning the graph once more, the opposite extreme to control nodes is 

excursions well above the TLV®.  An arrow at the base of the steep peak at the right of 

the graph marks the initial insult of coal dust on the work environment.  This rise to 10 

times the exposure limit corresponds to the introduction of the dustier coal from the 

storage silo.  Through a simple visual assessment of the graph, the introduction of silo 

coal can easily be characterized as the most significant determinant of exposure that day.   

This exposure graph can also be used as an educational tool for the worker to see 

the relative hazards for each sub-activity within their specific task.  The ability to quickly 

generate this graph allows the worker to more easily remember the specific exposures 

that are illustrated.  If the use of PPE were in question, this graphical representation of the 

potential hazardous environment can serve to reinforce the need for proper and consistent 
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PPE usage.  In general, even with only one sample, the DRI allows for a more complete 

understanding of exposure for both the industrial hygienist and the exposed workers.   

In summary of research question three, the information gained from the AFIT 

EAS and even one DRI sample is much more robust and insightful than could possibly be 

gained by the data provided by several analytical samples.  To underscore this point, the 

corresponding 8-hour TWA for the exposure discussed above was 0.189 mg/m3, which is 

less than half the 8-hour TLV®-TWA of 0.4 mg/m3.  Therefore, under current guidance, 

this exposure would be incorrectly classified as a well-controlled exposure, requiring no 

follow-up sampling, no medical monitoring, no additional education and no controls of 

any kind.     

The last research questions was, “What limitations (if any) does the AFIT EAS 

have which fails to outperform either the OSHA or AIHA EAS?”  While the AFIT EAS 

is by no means perfect and still requires further testing, this study did not find any 

relative weaknesses when related to either the OSHA EAS or the AIHA EAS.  However, 

the next sections of this chapter will focus on areas for improvement and limitations of 

both this study and the AFIT EAS.   

Suggested Methodology Improvements 
  

The use of an optical particle counter would have given better insight into the size 

distribution of the dust allowing for a more precise calculation of the DRI correction 

factor as related to the analytical data.  (O'Shaughnessy, et al., 2002) A more reliable 

conversion between the DRI and analytical results could preclude the analytical 

component, saving time and money.  
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Strengths and Limitations 
 

Strengths and limitations are common to every study and unique to each particular 

research effort.  However, by acknowledging these perceived successes and failures, 

future researchers are provided with an awareness of the common pitfalls and a 

foundation with which to develop deeper understanding and discover fresh innovations.    

Strengths 

The most profound strength was the power and insight of the exposure assessment 

graphs.  If a picture is worth a thousand words, then a graph of the exposures is worth a 

hundred analytical samples.  This point was addressed at length in the section above titled 

“Research Summary” within this chapter.   

Another key strength was the use of parametric and non-parametric statistics in 

the comparison of the EASs.  The calculation of the probability function describing the 

likelihood for a worst-case exposure assessment to identify successfully an overexposure 

was of particular interest.  By defining three variables, 1) the accuracy of a technician’s 

ability select a worst-case worker, 2) the percentage of the exposure distribution defined 

as worst-case, and 3) the exceedance fraction of the exposure profile, then the probability 

of sampling an overexposure can be calculated.   

With this probability function, various scenarios can be tried by modifying the 

three components, to see the value and limitations of the worst-case model.  One of the 

limitations discovered was that under certain conditions, the probability for finding an 

overexposure using the worst-case method, regardless of the exceedance fraction, would 

statistically equate to the probability of using a purely random sample.  For example, if 

the top half of the exposure profile defines the worst-case and the technician has only an 
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accuracy of 50% for selecting a worst-case exposure, the probabilities for the worst-case 

method are no better than the random sample method.  Note that while the probabilities 

are equal, the statistical benefits to random sampling are lost in the case of worst-case 

sampling due to the intentional biasing of the data.    

Limitations 

In addition to recognizing a study’s strengths, it is equally important to document 

and analyze a study’s limitations.  With respect to this research effort, specific limitations 

regarding data collection and analysis have previously been addressed in earlier chapters.  

However, there are general limitations to the research at large as well as isolated 

observations requiring further critique.      

  An argument can be made that the use of DRIs by the AFIT EAS presents a 

limitation in accuracy, compared to an analytical method.  DRIs have limitations with 

inaccuracy and inconsistency under certain field conditions.  For example, research 

indicates that certain field portable organic vapor DRIs perform inconsistently under high 

humidity conditions and are not recommended for compliance sampling with OELs.  

(Coffey, et al., 2009).  Specifically, the DataRAM® used in this research also over 

responds to humidity levels exponentially above 60% relative humidity.  (Chakrabarti, et 

al., 2004)  Each DRI has specific limitations, which must be taken into account.  For 

instance, relative humidity in this study was recorded and results were adjusted 

accordingly.  The key to the AFIT EAS is through frequent field-use an increased 

familiarity with the available inventory of DRIs will allow for the management of these 

shortcomings under non-life threatening circumstances.  In addition, for comprehensive 
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EA, it is better to have a large number of slightly less accurate sample data than a single 

highly accurate sample point taken over the same period.   

Another limitation is in reference to the exposure assessment.  The sampling 

campaign’s coal exposure results as described by the exposure profile were determined to 

be uncontrolled.  Therefore, the field evaluation was one sided in that it could only test 

the ability of a strategy to reach a positive conclusion toward an uncontrolled exposure 

conclusion.  This potentially favors EAS, which are more sensitive to the beta error 

without evaluating their potential insensitivity to the alpha error.  The question left 

unanswered is, “What is the risk that an exposure will be found unacceptable when in 

truth it is acceptable?  It is important to note that the EAS does not have a causative effect 

on exposure.  They are simply tools for evaluating what is already the true workplace 

exposure.  Therefore, if there are no overexposures during sampling, an EAS, which is 

extremely sensitive toward detecting overexposures, will not find what is not there.  The 

problem does present itself when a relatively low exceedance fraction is determined to be 

adequate.  However, this limitation is not necessarily on the part of the discovery of 

overexposures but in the lack of guidance as to what exceedance fraction is acceptable.   

The lack of guidance regarding the exceedance fraction is the last limitation 

covered in this section.  This limitation is not specific to the AFIT EAS but is a concern 

for all comprehensive exposure assessment models involving the notion of the 

exceedance fraction.  The idea that a certain percentage of the population is perpetually at 

risk for exceeding the exposure limit is unsettling.  Furthermore, the proposal of formally 

establishing an acceptable exceedance fraction that workers are allowed to be 

overexposed to is intuitively objectionable.  However, the realization that the work force 
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is statistically overexposed at a given percentage is the foundation and justification for 

the existence of the entire occupational health and safety industry.  By not defining a 

reasonable exceedance fraction, in effect the hierarchy concurrently accepts and rejects 

all exceedance fractions.  The impartial application of the AFIT EAS is hindered by the 

absence of a clearly defined acceptable exceedance fraction.  The open interpretation of 

an acceptable exceedance fraction, predictably allows that some will not tolerate even a 

1% exceedance while there will be others who will not act upon 25% or even higher 

exceedance fractions.  The recommendation of an acceptable exceedance fraction is 

outside the scope of this research effort.  A study of the benefits and limitations of 

various levels of exceedance is worthy of future research.   

Recommendations for Future Research 
 

However, the need for further research and study is not limited to the topic of the 

exceedance fractions.  The potential approaches to future research fall into two 

categories: the expansion of this study and the development of related research areas.  

Recommendations for future research are plentiful in both categories.   

Expansion of This Study 

This study is naturally divided in to two endeavors, namely, the sample collection 

effort and the EAS evaluation effort.  Each of these phases of the study can be expanded 

in their own right.  

With respect to the data collection campaign, a companion study using a vapor or 

gas exposure would provide the opportunity to use all three tiers of the AFIT EAS.  

Additionally, there are other classes of DRIs available to the AFIT EAS to incorporate 

using a gas or vapor contaminant.   



59 

As mentioned in the limitations section, an exposure assessment with a lower 

exceedance fraction could be conducted.  However, this presents the problem of 

increased analytical samples that fall below the limit of detection.        

With regard to the EAS evaluation phase, additional EAS strategies used in 

industry could be challenged using the existing sample data from this study.  The AFIT 

EAS was anticipated to be significantly distinct from both the OSHA and AIHA models.  

However, there are lesser-known strategies that could be incorporated into the AFIT EAS 

for a more refined model.     

Additional Research Areas 

Opportunities for future research also exist in related areas of study outside the 

scope of this research initiative.  Additional research in the use of Bayesian statistics 

would facilitate the comparison of the data and results in relation to exposure 

categorization, control banding, and professional judgment.  (Hewett, et al., 2006)  

Currently, the Air Force categorizes shops into one of three risk categories.  However, the 

use of Bayesian statistics would not only categorize the exposure but also facilitate the 

categorization of the professional judgment component associated with the final 

assessment.    

Conclusions 
  

Without question, a formal strategy for the Bioenvironmental Engineering career 

field is necessary.  The Bioenvironmental Engineering vision statement is, “Optimize 

combat capabilities by preventing casualties and enhancing performance in the deployed 

and in garrison environments through full spectrum threat health risk reduction”(USAF, 

2006)   The AFIT EAS directly supports this vision as it prevents casualties and enhances 
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performance by more accurately detecting overexposure than traditional AF methods.  In 

addition, the AFIT EAS aids in the development of a “full spectrum threat health risk 

reduction” by encouraging the everyday use of DRIs.   

Likewise, the mission statement is, “Provide operational health risk assessment 

expertise to enhance commander decision making and health service support 

capabilities”.  The AFIT EAS also supports the mission statement as it gives commanders 

and BEEs a more robust understanding of the health risks faced by our fellow Airmen.   

Regardless of whether the AFIT EAS is ever adopted as official doctrine, every 

worker in our Air Force deserves a comprehensive health risk assessment for expert risk 

management.  Mulhausen phrases it best with his quote,  

“Because a comprehensive approach to exposure assessment provides a 
more complete understanding of exposures than the compliance approach, 
it enables better management of occupational hygiene-related risks.  It 
helps provide assurance to an organization’s management, customers, 
employees, and the communities in which the organization operates that 
occupational health risks are understood and that the proper steps are 
being taken to manage the risks.”  (Mulhausen, et al., 2003) 

 
It is due to the congruency of a comprehensive approach with the vision and mission 

statements the next step in excellence in health assessments should include this strategy.    
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Appendix A:  AFIT EAS 

The following is the AFIT EAS student project reprinted in its entirety.   
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Appendix B:  Sample Results 

The following are copies of the sample results from Bureau Veritas, reprinted in their 

entirety.  
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Appendix C:  Exposure Assessment Graphs 

 The following figures show the 1-minute average concentrations of particulates 

during each of the 26 sampling events.  Overlaid on the graphs are the ACGIH® TLV® 

for anthracite coal dust, the 30-minute excursion limit at three times the TLV®, and the 

upper excursion limit at five times the TLV®.  Lastly, the red line shows the 

concentrations based on the DRI, while the black line is the adjusted concentration 

equaling the analytical results.   
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Appendix D:  Tabulated Sample Data 

This appendix is a collection of the detailed sample data regarding the exposure 

assessment of the coal workers.  Table D1, is a list of the pre- and post-calibration flow 

rates of the sampling pump used to collect the coal dust samples.  Table D2 applies the 

pre-calibration flow rate with the task duration to calculate the volume of air sampled.  

Table D3 is a register of the task TWA provided by the analytical lab and the 8-hour 

TWA, which is a weighted average, based on the task TWA times the duration of 

exposure and a zero concentration times the remaining unexposed duration divided by 8 

hours.  Table D4 is an evaluation of the task TWA and the 8-hour TWA regarding the 

ACGIH® TLV®.  Table D5 is the same evaluation regarding ACGIH® excursion limits.  

Lastly, Table D6 is a summary of relative humidity data lost.        

Table D1: GilAir5® Flow Pump Calibration 

Date Calibrated Flow Rate (L/min) 
Pre-Cal  Post-Cal  Post-Cal +/- 10% 

17-Dec 2.775 2.920 YES 
19-Dec 2.689 2.539 YES 
22-Dec 2.767 2.900 YES 
23-Dec 2.724 2.564 YES 
24-Dec 2.688 2.669 YES 
25-Dec 2.730 2.824 YES 
26-Dec 2.676 2.711 YES 
27-Dec 2.706 2.616 YES 
28-Dec 2.655 2.703 YES 
29-Dec 2.673 2.700 YES 
30-Dec 2.721 2.603 YES 
31-Dec 2.713 2.767 YES 
2-Jan 2.731 2.710 YES 
3-Jan 2.696 2.698 YES 
4-Jan 2.715 2.631 YES 
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Table D2: GilAir5® Flow Pump Volumes 

Date Collected  Start Time Stop Time Duration 
(minutes) 

Volume 
(Liters) 

17-Dec 915 1148 153 424.6 
19-Dec 747 958 131 352.3 
19-Dec 1138 1231 53 142.5 
22-Dec 735 1055 200 553.4 
23-Dec 740 1009 149 405.9 
23-Dec 1201 1320 79 215.2 
24-Dec 1157 1236 39 104.8 
25-Dec 724 901 97 264.8 
25-Dec 1202 1250 48 131.0 
26-Dec 722 942 141 377.3 
26-Dec 1203 1302 59 157.9 
27-Dec 714 805 51 138.0 
27-Dec 1204 1301 57 154.2 
28-Dec 715 855 100 265.5 
28-Dec 1202 1255 53 140.7 
29-Dec 742 1102 200 534.6 
29-Dec 1202 1252 50 133.7 
30-Dec 735 906 91 247.6 
30-Dec 1201 1302 61 166.0 
31-Dec 728 897 89 241.5 
31-Dec 1202 1254 52 141.1 
2-Jan 744 1038 174 475.2 
3-Jan 714 831 77 207.6 
3-Jan 1205 1300 55 148.3 
4-Jan 735 923 108 293.2 
4-Jan 1200 1338 58 157.5 
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Table D3: Task and 8-Hour TWA Concentration Results of Analytical Samples 

Date 
Collected 

Task Conc. 
(mg/m3) 

Task 
Duration 
(minutes) 

8-hr TWA Task Conc.> 
0.4 mg/m3 

8-hr TWA > 
0.4 mg/m3 

17-Dec 0.59 153 0.188 YES - 
19-Dec 0.43 131 0.117 YES - 
19-Dec 0.35 53 0.039 - - 
22-Dec 5.1 200 2.125 YES YES 
23-Dec 0.32 149 0.099 - - 
23-Dec 0.23 79 0.038 - - 
24-Dec 0.48 39 0.039 YES - 
25-Dec 0.91 97 0.184 YES - 
25-Dec 0.38 48 0.038 - - 
26-Dec 3.71 141 1.090 YES YES 
26-Dec 0.63 59 0.077 YES - 
27-Dec 0.94 51 0.100 YES - 
27-Dec 0.32 57 0.038 - - 
28-Dec 1.7 100 0.354 - YES 
28-Dec 0.71 53 0.078 - - 
29-Dec 0.41 200 0.171 - YES 
29-Dec 0.97 50 0.101 - YES 
30-Dec 0.69 91 0.131 - YES 
30-Dec 0.36 61 0.046 - - 
31-Dec 0.498 89 0.115 - YES 
31-Dec 0.35 52 0.038 - - 
2-Jan 0.484 174 0.218 - YES 
3-Jan 0.29 77 0.047 - - 
3-Jan 0.34 55 0.039 - - 
4-Jan 0.51 108 0.115 - YES 
4-Jan 0.32 58 0.039 - - 
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Table D4: Task and 8-Hour TWA Concentration Results of DRI Samples 

Date  
Collected 

Correction Factor 
Equating DRI 
to Analytical 

Task Conc. 
(mg/m3) 8-hr TWA Task Conc. 

> 0.4 mg/m3 
8-hr TWA  

> 0.4 mg/m3 

17-Dec 1.074 0.549 0.175 YES - 
19-Dec 1.129 0.381 0.104 - - 
19-Dec 1.470 0.238 0.026 - - 
22-Dec 1.653 3.086 1.286 YES YES 
23-Dec 0.863 0.371 0.115 - - 
23-Dec 0.580 0.397 0.065 - - 
24-Dec 3.506 0.137 0.011 - - 
25-Dec 1.088 0.837 0.169 YES - 
25-Dec 1.897 0.200 0.020 - - 
26-Dec 2.493 1.488 0.437 YES YES 
26-Dec 1.255 0.502 0.062 YES - 
27-Dec 1.408 0.668 0.071 YES - 
27-Dec 3.196 0.100 0.014 - - 
28-Dec 1.896 0.897 0.187 YES - 
28-Dec 1.586 0.448 0.049 YES - 
29-Dec 1.303 0.315 0.131 - - 
29-Dec 2.292 0.423 0.044 YES - 
30-Dec 1.095 0.630 0.119 YES - 
30-Dec 1.032 0.349 0.044 - - 
31-Dec 1.086 0.459 0.106 YES - 
31-Dec 1.179 0.297 0.032 - - 
2-Jan 1.414 0.342 0.154 - - 
3-Jan 0.693 0.418 0.067 YES - 
3-Jan 1.170 0.291 0.033 - - 
4-Jan 0.960 0.532 0.120 YES - 
4-Jan 0.847 0.378 0.046 - - 
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Table D5:  Excursion Limit Results for DRI and Analytical Samples (A.S.) 

 
Date Collected 

DRI 
> 3x TLV® 

A.S. 
> 3x TLV® 

DRI 
> 5x TLV® 

A.S. 
> 5x TLV® 

17-Dec - - YES YES 
19-Dec - - - - 
19-Dec - - - YES 
22-Dec YES YES YES YES 
23-Dec - - - - 
23-Dec - - - - 
24-Dec - - - - 
25-Dec - - YES YES 
25-Dec - - - - 
26-Dec - - YES YES 
26-Dec - - - YES 
27-Dec - - YES YES 
27-Dec - - - - 
28-Dec - - YES YES 
28-Dec - - YES YES 
29-Dec - - YES YES 
29-Dec - - YES YES 
30-Dec - - YES YES 
30-Dec - - - - 
31-Dec - - YES YES 
31-Dec - - - - 
2-Jan - - YES YES 
3-Jan - - - - 
3-Jan - - - - 
4-Jan - - YES YES 
4-Jan - - - - 
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Table D6:  Summary of Relative Humidity Data Lost 

Date Collected Location Total Minutes Minutes Lost 
17-Dec Area B 153 2 
26-Dec Area B 141 8 
27-Dec Area B 51 7 
28-Dec Area B 100 1 
30-Dec Area B 91 3 
30-Dec Area C 61 2 
31-Dec Area B 111 4 
2-Jan Area B 216 1 
3-Jan Area B 77 2 
4-Jan Area B 108 6 
4-Jan Area C 58 3 
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